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Abstract

Neural networks’ ability to generalize to unseen data has proven difficult to explain
by statistical learning theory. Recent works have used PAC-Bayes bounds to derive
non-trivial generalization bounds for deep neural networks applied to realistic
problems. In other works, it has been found that neural networks can obtain high
performance even when projected onto random low-dimensional subspaces of their
parameter space. In this paper I use this property and PAC-Bayes theory to obtain
the tightest generalization bounds yet for neural networks applied to MNIST.

1 Introduction

Everybody knows that neural networks have proven astonishingly successful at a wide range of tasks.
But until recently, nobody has had much idea why they work so well, and theory has lagged far
behind practice. Two questions stand out: why are neural networks able to learn by gradient descent,
and avoid local minima? And why do the resulting models, highly overparameterized as they are,
generalize to new examples?

One thread of research has shown that neural networks can be modelled as essentially linear systems
in the infinite-width limit. The Neural Tangent Kernel[4] precisely describes the evolution of the
network’s input-output function in this limit. For networks of finite width, recent theoretical works
have also shown that gradient descent will obtain zero training error under broad assumptions.];lppp

A remaining piece of the puzzle is generalization. Even if neural networks are able to obtain zero
error on their training set, this does not imply they will generalize to new examples. Traditional
tools of statistical learning theory give trvial bounds when applied to highly-overparametrized neural
networks [7]. Here, too, there has been progress. Dzuigaite and Roy[2] obtained the first non-vacuous
generalization bounds for modern neural networks by optimizing a PAC-Bayesian bound over a
stochasticized version of the network. They obtained non-trivial bounds for a binarized version of
MNIST. A later paper[8] obtained non-vacuous generalization bounds for full MNIST and ImageNet
using PAC-Bayesian theory and a compression approach, whereby the generalization error of a model
is bounded by the length of a code needed to specify it. A further work by Dzuigaite and Roy
[3] obtained generalization bounds for neural networks using data-dependent priors, however, their
bounds only hold contingent upon an assumption about the convergence behaviour of SGLD.

Following this line of work, in this paper I will present the tighest generalization bounds yet for
full MNIST. My bounds will be based on the idea of the intrinsic dimension of a learning problem,
introduced in [5]. Intrinsic dimension measures a surprising property of neural networks: learning can
occur even when the parameters of the network are projected to a random low-dimensional subspace.
In [5] it was shown that for neural networks applied to realistic problems, the dimensionality of the
parameters could be reduced by several orders of magnitude while preserving good performance.
This implies the resulting models are highly compressible; by applying PAC-Bayesian theory to these
compressed models, it is possible to obtain strong generalization bounds.
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2 PAC-Bayesian Bounds

PAC-Bayes bounds are a method for proving generalization of supervised learning models. Here I
provide a brief overview of PAC-Bayesian theory.

PAC-Bayes bounds apply to supervised learning problems. A supervised learning problem consists of
an input space X , an output space Y , and an unknown probability distribution D over X × Y . Given
a loss function `(ŷ, y) → R, and a sample S = (xi, yi)

N
i=1 drawn identically and independently

distributed from D, the goal of supervised learning is to choose a hypothesis h ∈ H which minimizes
the expected loss `(h) = E(x,y)[`(h(x), y)]

A common approach to supervised learning is minimizing the empirical risk ˆ̀(h) =
1
N

∑N
i=1 `(h(xi), yi). This amounts to treating the sample S as a proxy for the true distribution D.

This introduces the danger of overfitting, choosing a model which performs well on the sample S but
poorly on the underlying distribution D. The generalization error of a hypothesis h is `(h)− ˆ̀(h)

PAC-Bayes theory was introduced by MacAllester in [6]. PAC-Bayes theorems can be used to place
upper bounds on the generalization error of a model, ensuring that it will perform well on new data.
PAC-Bayes bounds generally apply to stochastic classifiers, represented as a probability distribution
Q over the space of classifiersH . A prior distribution P is also introduced, independent of the sample.
This prior distribution P The tighest version of the PAC-Bayes theorem yet given is due to Catoni[1]:

Let ` be a 0, 1-valued loss function and P be a distribution on the hypothesis class H , let α > 1,
ε > 0 be fixed. With probability at least 1− ε over the sample:

L(Q) ≤ inf
γ>1

Φ−1
γ/N{L̂(Q) +

α

γ
〈KL(Q,P )− log(ε) + 2 log

(
log(α2γ)

log(α)

)
〉}

where Φ−1 is defined as:

Φ−1
γ (x) =

1− e−γx

1− e−γ

If L̂(Q) and KL(Q,P ) are differentiable, then this bound can be optimized by gradient descent and
similar methods. While we will ultimately be interested in applying the bound to accuracy(the 0-1
loss), to facilitate this optimization will be performed using a differentiable proxy(in our case the
cross-entropy loss).

3 Random Projections

Here I discuss the method of random projections, introduced in [5] as a method for measuring the
"intrinsic dimension" of a learning problem. A neural network can be represented as a parameter
vector θ ∈ RD, initialized at some θ0. Modern neural networks can have D in the range of thousands
to billions. During training, a random projection matrix P ∈ RD×D of rank k is chosen, and all
gradients∇θ are replaced with their projection P∇θ. Choosing a basis B ∈ RD×k for the span of
P , the final parameter vector θf can be represented by θ0 and a vector v ∈ Rk, θf = θ0 +Bv

Importantly, because the random projection matrix P and the initial parameter vector θ0 have no
dependence on the training sample, they can be used in the definition of a PAC-Bayes prior over
neural networks lying in this random subspace.

A variety of approaches could be taken to obtain a PAC-Bayes prior for randomly-projected neural
networks. Here I will follow Dzuigaite and Roy [2] and use a stochasticized version of the network.
Thus, the parameter vector of the network will be represented by θ = θ0 +Bv, where v is distributed
v = N (µq,Σq), where Σq is a diagonal matrix. The prior distribution over v is given by N (0, λI).
The KL divergence between our learned posterior for v and the prior can be easily computed using
standard formulae.

It will be useful to be able to optimize over the prior parameter λ. To accommodate this a uniform
prior will be placed over the 232 possible floating point values of λ, adding 32 to the KL term. In
sum, the variables to be optimized over are µq , the diagonal entries of Σq , γ and λ.
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4 Empirical PAC-Bayes Bounds

4.1 MNIST

Here I report the performance of my bound on MNIST. The network architecture was a standard
LeNet, with two stacks of convolution and max-pooling followed by 3 fully-connected layers. ReLU
nonlinearities were used. The network was trained in the projected subspace for 20 epochs to a good
minimum, using SGD with learning rate 0.01. Following this, PAC-Bayes optimization began. The
posterior means were initialized at the learned values and the posterior variances were initialized at
e−3. For stability, the logarithms of the posterior variances were optimized. Optimization was done
over the PAC-Bayes objective with the cross-entropy loss serving as a differentiable proxy for L̂(Q),
using SGD for 20 epochs.

The dimension of the random projection was chosen to be 1000.The random projection matrix P was
constructed by constructing matrix R ∈ RD×D by choosing independent Gaussians for every entry,
then taking the SVD R = USV . The first k rows of the orthogonal matrix U were used as the basis
for B, the basis of the random projection.

A final PAC-Bayes bound for the accuracy of 0.845 was obtained, holding with probability 0.95.
The accuracy on the test set was 0.95. The best-known generalization bound in the literature is 0.54
[8]. While a gap still remains between generalization bounds and test performance, it is significantly
smaller.

5 Conclusion

In this paper I have demonstrated a connection between the concept of intrinsic dimension and
generalization bounds. As shown in [1]GeneralizationCompression, PAC-Bayes priors are closely
related to efficient ways of compressing neural networks. Thus the current work provides some
evidence that random projections can be a powerful way of compressing the useful structure of neural
networks. However, for more challenging problems, a significant gap between generalization bounds
and accuracy remains. In the future, hopefully new and powerful ways of distilling the structure in
neural networks can be found, leading to both greater understanding and improved generalization
bounds.

References
[1] Olivier Catoni. Pac-bayesian supervised classification: the thermodynamics of statistical learning.

arXiv preprint arXiv:0712.0248, 2007.

[2] Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous generalization bounds for
deep (stochastic) neural networks with many more parameters than training data. arXiv preprint
arXiv:1703.11008, 2017.

[3] Gintare Karolina Dziugaite and Daniel M Roy. Entropy-sgd optimizes the prior of a pac-bayes
bound: Generalization properties of entropy-sgd and data-dependent priors. arXiv preprint
arXiv:1712.09376, 2017.

[4] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in neural information processing systems, pages
8571–8580, 2018.

[5] Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic
dimension of objective landscapes. arXiv preprint arXiv:1804.08838, 2018.

[6] David A McAllester. Some pac-bayesian theorems. Machine Learning, 37(3):355–363, 1999.

[7] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

[8] Wenda Zhou, Victor Veitch, Morgane Austern, Ryan P Adams, and Peter Orbanz. Non-vacuous
generalization bounds at the imagenet scale: a pac-bayesian compression approach. arXiv
preprint arXiv:1804.05862, 2018.

3


	Introduction
	PAC-Bayesian Bounds
	Random Projections
	Empirical PAC-Bayes Bounds
	MNIST

	Conclusion

