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In this brief note I will present a simple counterexample to the main inequal-
ity found in ”Statistical Physics of Self-Replication”[2](henceforth referred to as
”the paper”). I will then present a slightly altered version of the inequality,
discuss its significance for the main findings of the paper, and mention some
related work.

1 The Original Inequality

First, some terminology. The paper concerns physical systems which can be
found in some set of ’microstates’. A microstate could be thought of as a spec-
ification of the location of all particles in a system and their velocities, for
instance. Interaction with an environment causes these microstates to transi-
tion from one to another in a stochastic fashion. We can think of the collection
of microstates as a Markov chain – for every pair of microstates i, j, there is
some probability π(i → j) of transitioning from i to j in a given interval of
time(this probability can be zero) In addition, during each transition between
microstates i, j the system releases an amount of heat ∆Q into the environ-
ment. This amount of heat can vary randomly, although we require the ’local

reversibility’ condition π(j→i)
π(i→j) = 〈exp[−β∆Q]〉i→j . β is the inverse temperature

of the environment.
We can now define ’macrostates’. Macrostates are collections of microstates

which are associated with some measurement outcome, e.g. ’there is one healthy
cell in the environment’, if our physical system consisted of an environment
for growing cells. Then for each macrostate I, we can define a probability
distribution over all microstates in I, p(i|I), defined as the probability that
the system is in microstate i after we observe I (after following some agreed-
upon procedure to prepare the system) The entropy of a macrostate I is the
Gibbs entropy of the probability distribution defined by that macrostate, SI =∑
i∈I −p(i|I)ln[p(i|I)]
Given two macrostates I and II, we can define some quantities related to

the transition from I to II. π(I → II) is the probability of transitioning from
the macrostate I to II over some fixed interval of time. The entropy change
∆Sint of a transition I → II is defined as SII − SI . The average heat released
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is 〈∆Q〉I→II , where the average is done over all paths from I to II weighted by
their probability and the probability of their starting states.

Now we can state the inequality: for arbitrary macrostates I and II, and a
transition from I to II,

β〈∆Q〉I→II + ln[
π(II → I)

π(I → II)
] + ∆Sint ≥ 0

Figure 1: The counterexample.

2 Counterexample

To see the counterexample, let I consist of:
-a single microstate A with p(A|I) = 1

2

-2m microstates C1, ...C2m with p(Ci|I) = 2−(m+1).
And let II consist of a single microstate B with p(B|II) = 1.
Define the transition probabilities between microstates:

π(A→ B) = 1

π(Ci → B) = 0

π(B → A) = 1

From this, it is easy to calculate the quantities needed for the inequality. We
have
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π(I → II) =
1

2

π(II → I) = 1

ln[
π(II → I)

π(I → II)
] = ln(2)

SI =
1

2
ln(2) +

1

2
ln(2)(m+ 1)

SII = 0

∆Sint = −1

2
ln(2)− 1

2
ln(2)(m+ 1)

The only transition between I and II is A→ B, so
〈∆Q〉I→II = 〈∆Q〉A→B
So we have

β〈∆Q〉I→II + ln[
π(II → I)

π(I → II)
] + ∆Sint

= β〈∆Q〉A→B + ln(2)− 1

2
ln(2)− 1

2
ln(2)(m+ 1)

= β〈∆Q〉A→B −
1

2
ln(2)m

Since β〈∆Q〉A→B is not dependent on m, we can always choose m large
enough to make the above negative. So the inequality is violated.

3 The Altered Inequality

The problem in the derivation of the inequality came between equations (7) and
(8) in the paper. Equation (7) states〈

e−ln[
π(II→I)
π(I→II)

]+ln[
p(j|II)
p(i|I) 〈e−β∆Qi→j 〉i→j

〉
I→II

= 1

By applying Jensen’s inequality twice, we can obtain

β〈∆Q〉I→II + ln[
π(II → I)

π(I → II)
] + 〈−ln(p(j|II))〉I→II − 〈−ln(p(i|I))〉I→II ≥ 0

This is almost the desired inequality. The only problem is the last term,
〈−ln(p(j|II))〉I→II − 〈−ln(p(i|I))〉I→II . whereas, ∆Sint = 〈−ln(p(j|II))〉II −
〈−ln(p(i|I))〉I .
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From the definition of II and I → II, we know that 〈−ln(p(j|II))〉I→II =
〈−ln(p(j|II))〉II . However, in general, 〈−ln(p(i|I))〉I will not be equal to
〈−ln(p(i|I))〉I→II . The latter is an altered probability distribution, where states
with a high probability of transitioning to II have a higher weight. Therefore,
if there are some states in I which contribute a lot to the entropy but have a
proportionately lower probability of transitioning to II, the original inequality
can be violated, as in the example above. If we define the ’conditional entropy
change’∆Sint|I→II = 〈−ln(p(j|II))〉I→II−〈−ln(p(i|I))〉I→II , we can write our
new inequality in the form:

β〈∆Q〉I→II + ln[
π(II → I)

π(I → II)
] + ∆Sint|I→II ≥ 0

This is very close to the original inequality. The only difference is that the
change in entropy is now a conditional change, where the distributions being
summed over to calculate the entropies are conditioned on the fact that the
transition took place.

4 Significance

Is this alteration significant for the main results of the paper, the application of
the inequality to self-replicators?

It is not entirely clear. In the context of the paper, the state I is used
to represent a single self-replicator, while II is a state containing two self-
replicators. Then the inequality is used to bound the maximum possible ratio
of duplication to decay events in terms of the heat released into the environment
and the internal increase in entropy. It appears that the self-replicator could
now ’cheat’ this inequality, allowing it to have a smaller increase in internal
entropy for a given amount of heat released plus ratio of growth to decay. But,
the altered version of the inequality shows that it would have to do this in a very
particular way – any gains over the original inequality would be bounded above
by SI−SI|I→II , which is essentially the knowledge gained by an observer about
the initial state I, given that the transition to II took place. As in the example
above, there would need to be a great number of states in I that contribute a
lot to the entropy but are relatively unlikely to transition to II

What can we say about the structure of these states? Let’s call the states
that contribute a lot to the entropy but are unlikely to lead to a duplication ’im-
potent’. First, note that the degrees of freedom that lead to impotent states are
unlikely to reside in the self-replicator itself, as the state II would presumably
contain twice as many of these degrees of freedom, counteracting the apparent
decrease in entropy production. But perhaps they could exist in the environ-
ment surrounding the replicators, if we are including that in the definition of
the ’system’ we are considering. For instance, perhaps there is some molecule
in the environment that could be in a variety of configurations, and the self-
replicator will only begin duplication if it encounters a particular configuration
of the molecule. Then, the knowledge of an observer about the initial state
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would be increased, as the observer will now know that the molecule was more
likely to be in some configurations than others.

I don’t know if this sort of scenario is biologically realistic, or if it has any
chance of applying to the systems considered in the original paper. But it seems
at least conceivable that this alteration of the inequality could be exploited by
self-replicators to exceed the bounds given in the paper.

5 Other Work

In their paper ”The Bayesian Second Law of Thermodynamics”[1], Carroll et
al. derive a useful general framework for thinking about problems of this sort.
They derive the altered version of this inequality in section 7 of this paper.

References

[1] Anthony Bartolotta, Sean M Carroll, Stefan Leichenauer, and Jason Pol-
lack. The bayesian second law of thermodynamics. arXiv preprint
arXiv:1508.02421, 2015.

[2] Jeremy L England. Statistical physics of self-replication. The Journal of
chemical physics, 139(12):121923, 2013.

5


