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1 Introduction

In recent years there has been an explosion of interest in deep neural net-
works. Neural networks have found applications in virtually every field of
machine learning, including image recognition, natural language processing,
speech recognition, object manipulation, and game playing. In many of these
fields, neural-net-based programs have dramatically outperformed the state
of the art.

In comparison, progress has been relatively slow in the theory of neural
networks – understanding why, and under what circumstances, neural nets
perform so well. The functions learned by neural networks are hugely com-
plex, often requiring millions or even billions of parameters to specify. These
highly over-parametrized functions have proven challenging for traditional
machine learning theory.

This was illustrated by the work of [14]. They showed that the traditional
bounds of statistical learning theory could not account for the ability of neural
networks to generalize from training to the test set. The learning theory
bounds depend on the number of parameters needed to specify a model;
applied to modern neural networks they are vacuous, providing no bound at
all. Despite this, neural networks have been found to generalize well across
a wide range of tasks. Practice has outstripped theory.

In response, the past two years have seen the publication of the first non-
vacuous generalization bounds for deep neural networks[2]. These works pro-
vided provable guarantees on the performance of neural networks on the test
set in terms of their performance on the training set. This was achieved using
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the PAC-Bayes theory[10], in which individual classifiers are replaced with
probability distributions over a space of classifiers. Generalization bounds
can then be given in terms of the KL-Divergence between these probability
distributions and a fixed prior distribution. Dzuigaite and Roy[2] used PAC-
Bayes bounds to obtain the first nonvacuous generalizaton bounds on neural
nets with hundreds of thousands of parameters. Dzuigaite and Roy used
for their prior a Normal distribution centred at the initial weights of the
neural net, before training has taken place. This choice of prior can be seen
as a hypothesis about the types of solutions learned by stochastic gradient
descent(SGD) – namely, that they are often near the initial parameters, or
can adjusted to be so without affecting performance.

Another interesting line of work has considered compression of neural net-
works. Researchers have found that the vast majority of parameters in some
neural networks can be eliminated with no drop in performance[4][11]. The
PAC-Bayesian framework shows that compressibility is linked to generaliza-
tion; Zhou et al.[15] used PAC-Bayes bounds combined with compression
techniques to obtain nonvacuous bounds on a neural network with millions
of parameters trained on ImageNet, a challenging image-recognition task.

In this paper I will extend work on PAC-Bayes bounds and compression
by considering a variational Bayesian framework with a broader class of pri-
ors. Previously in [2], independent normal distributions have been used for
both the prior and posterior of the PAC-Bayes bounds. Here I will consider
sparsity-inducing priors, distributions which favour posteriors in which many
components are concentrated around zero. Such priors have been used in [8]
to compress neural networks. These priors exploit the compressibility of
neural networks, because nets in which most weights are near zero have low
KL-Divergence. Since neural networks are often compressible in practice, it
should be possible to obtain posteriors with low KL-Divergence and hence
non-trivial generalization bounds. This choice of prior can also be thought
of as a hypothesis about the types of solutions learned by SGD – that they
are highly amenable to pruning, that is eliminating many weights from the
model.

2 PAC-Bayes bounds

Here I will give a brief overview of the PAC-Bayes framework, following [9].
The PAC-Bayes framework can be applied in any context where a learning
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algorithm is assigned a cost function based on its output. We have a hy-
pothesis class H, and a distribution D over a set of ’situations’ S. For each
hypothesis h ∈ H and situation s ∈ S, there is assigned as loss L(h, s). In
the context of image classification, a ’situation’ would be an (image, label)
pair, h would be a classifier, and L(h, s) the loss of that classifier on the given
pair. The overall loss of a given classifier, L(h) is defined as the expected
loss over the distribution D. Given a sample from D with N elements, we
define the empirical risk L̂(h) = 1

N

∑N
i=1 L(h, si) as the expected loss over the

sample. To incorporate Bayesian methods, we now introduce distributions
P and Q over the hypothesis class. P is a fixed prior distribution, while Q
can be learned from the sample. The losses L(Q), L̂(Q) are respectively the
expected loss and empirical risk(loss on the training sample) of Q. Essen-
tially, we can obtain valid bounds if the learned posterior Q can be specified
compactly with P . To measure to what extent Q is close to P , we introduce
the Kullback-Liebler divergence(KL Divergence) between two distributions
P and Q:

KL(Q||P ) =

∫
H

Q(h)log

(
Q(h)

P (h)

)
dh

Intuitively, this measures the number of bits needed to specify a random
sample from Q in terms of P . In the case of a discrete hypothesis space, this

measure becomes
∑

hQ(h)log
(
Q(h)
P (h)

)
.

We will also need the Bernoulli distribution in what follows. The Bernoulli
distribution is defined as a distribution over a binary outcome. Ber(p) will
denote a Bernoulli distribution with probabilities p and 1 − p. Given this
setup, we have the following theorem(from [9]):

Theorem 1 For fixed λ > 1
2

selected before the draw of the sample, we have
that, with probability at least 1− δ, the following holds simultaneously for all
distributions Q on H.

KL(L̂(Q)||L(Q)) ≤
KL(Q||P ) + log(N

δ
)

N − 1
(1)

In a slight abuse of notation, we here defineKL(a||b) = KL(Ber(a)||Ber(b)) =
alog(a/b) + (1− a)log((1− a)/(1− b)) for scalar a, b. This theorem bounds
KL(L̂(Q)||L(Q)) by a constant c, but we actually want a bound on L(Q). So
we want to find the maximum value p such that KL(L̂(Q)||p) ≤ c. There is
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no simple formula for finding such a p, but, following [2], we can use Newton’s
method to find an approximately optimal p.

For the purposes of gradient-based optimization, we need a differentiable
proxy for the upper bound on L(Q). To do this we can use the fact that
KL(p||q) ≥ (p−q)2 and a little algebra to obtain the following upper bound:

L(Q) ≤ L̂(Q) +

√
1

2

KL(Q||P ) + log(N
δ

)

N − 1
(2)

This is the bound we will optimize using gradient descent. To allow for
gradient-based optimization we must replace the empirical risk L̂(Q) with a
differentiable proxy. We will use the cross-entropy loss, which is −log(ptrue),
where ptrue is the probability our model assigns to the true class of an in-
stance.

3 Bayesian Neural Networks

In Bayesian neural networks, our model incorporates uncertainty about the
values of the weights of the network. One of the simplest models of such un-
certainty is to simply introduce an independent distribution for each param-
eter in the network. These distributions can themselves be parameterized,
and these parameters can be updated using gradient descent to optimize the
performance of the randomized neural network on a given task. One of the
most commonly used models assigns a random Gaussian to each weight in
the network: q(wi,j) = N(ui,j, σ

2
i,j). This distribution can be easily sampled

from, and it can also be efficiently used in batch processing as shown in the
next section.

3.1 Local Reparameterization

The local reparameterization trick[7] is a method for speeding the evaluation
and reducing the variance of neural networks with Gaussian posteriors on
their weights. It uses the fact that a linear combination of Gaussians also
has a Gaussian distribution.

Suppose we’re processing a mini-batch of size M in a neural network with
Gaussian posteriors on our weights. If we have a W ×H layer, then naively
we need to take N × W × H samples from our Gaussian posteriors. But
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this can be avoided, as the sum of Gaussians is itself a Gaussian. We can
instead take samples from the implied Gaussian distribution on the output
of the layer, needing only N ×W samples. Representing the activations of
the inputs of the layer by am,i, the pre-activations of the outputs by bm,j, and
the weights by wi,j, we have:

q(wi,j) = N(ui,j, σ
2
i,j)→ q(bm,j) = N(ηm,j, δm,j)

where
ηm,j =

∑
am,iui,j

δm,j =
∑

a2m,iσ
2
i,j

This allows us to evaluate the layer more quickly, as we can take advantage of
fast GPU matrix multiplication. It also reduces the variance of our gradient
estimator.

4 Sparsity-Inducing Priors

4.1 Horseshoe Prior

The horseshoe prior was introduced in [1]. It has the following hierarchical
form:

τ ∼ C+(0, σ)

λi|τ ∼ C+(0, τ)

θi|λi ∼ N(0, λ2i )

Here, C+(0, σ) is the Half-Cauchy distribution C+(0, σ) = 2(σπ(1 +
(z/s)2))−1. X ∼ Y means X is a random variable distributed according
to Y . The variables modelling the data we are interested in are the θi’s.

The horseshoe prior is useful for a wide variety of sparse inference prob-
lems. This is mainly due to its dual nature: it has heavy Cauchy-like tails
decaying as θ−2, yet near the origin it is very tightly concentrated around
0, and in fact the density becomes unbounded near the origin. An interest-
ing feature of the horseshoe prior is that the variables λi are independently
distributed for each variable in the distribution, but τ is shared among all
variables. τ provides a ’global scale’ for the distribution.
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The horseshoe prior has been used for variational inference and compres-
sion in neural networks. In [8], it was used for group sparsity, that is, sparsity
at the level of neurons instead of weights. This allows the compressed net-
work to be run more efficiently. Compression rates of 800× were obtained,
and evaluation speed improved by a factor of 2. It is interesting to note
that the amount of compression is much greater than the obtained speedup
– the reason for this is that GPU kernels for matrix multiplication are op-
timized for dense matrices, so obtaining a much smaller sparse matrix does
not greatly improve evaluation speed.

4.2 Log-uniform prior

The log-uniform ’prior’ is not really a prior at all, as its integral over the real
line diverges. Nevertheless, it can serve in the role of a prior in variational
inference and inducing sparsity. It has the following form:

p(θ) =
1

|θ|
or equivalently

p(log(θ)) = c

Here c is some constant(the constant chosen does not matter, as it does
not affect the relative probability of different values of θ). The log-uniform
prior has been used for variational inference and compression in neural nets.
In [7] it was used as a prior for a neural net with Gaussian weights. They
showed that this prior is the only one consistent with dropout, a commonly
used technique for regularizing neural nets. (That is, optimizing a Gaus-
sian neural net with this prior imitates the effects of dropout). Their work
was extended in [11], who showed that an extension of this technique nat-
urally sparsifies neural networks. They were able to reduce the number of
parameters in neural networks by a factor of 280 using this method.

4.3 Lower Bounds for Mixture Priors

While the preceding priors have been successfully been used for neural net-
work compression in the past, they are problematic for the purposes of opti-
mizing PAC-Bayes bounds. The reason for this is that deep neural networks
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contain hundreds of thousands of parameters. To obtain non-trivial bounds,
we need the KL Divergence to be much smaller than the number of training
examples(e.g. MNIST has 50000 training examples). In a factorized varia-
tional posterior, the KL Divergence is the sum of the KL Divergence of the
posterior of each parameter, so the KL Divergence of most parameters must
be very close to zero.

Unfortunately, many sparsity-inducing priors cannot have low KL-Divergence
with a Gaussian posterior. No matter what parameters of the Gaussian we
choose, the KL Divergence will be large, simply because the priors don’t
resemble a Gaussian at any point in their range. This applies to the two
priors we discussed above(in fact the Log-uniform prior is not even normal-
ized so it can’t be used for KL-Divergences in any case), as well as to other
sparsity-inducing priors such as the double-exponential prior.

To deal with this, we’ll consider a restricted class of priors: scale mix-
tures of Gaussians. These are mixtures of Gaussian distributions with mean
zero and variance λ distributed according to a fixed prior. We can ensure
that such distributions will have low KL-Divergence with at least some Nor-
mal posteriors by concentrating the density of λ near a single value. Such
distributions can be written as:

p(x) =

∫
λ

h(λ)dλN [0, λ2](x)

where N [0, λ2] is the density function of a normal distribution with mean
0 and variance λ2, and h(λ) is the probability density function over the scale.

The KL divergence between such a distribution and an arbitrary posterior
can be bounded as follows:

KL(q||p) =

∫
x

dxq(x)log

(
q(x)

p(x)

)
=

∫
x

dxq(x)log(q((x))−
∫
x

dxq(x)log

(∫
λ

h(λ)dλN [0, λ2](x)

)
≤
∫
x

dxq(x)log(q((x))−
∫
x

dxq(x)

∫
λ

h(λ)dλlog(N [0, λ2](x))

=

∫
λ

dλh(λ)

∫
x

dxq(x)log

(
q(x)

N [0, λ2](x)

)
= E

h(λ)
KL(q||N [0, λ2])
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This last expression is the expected KL Divergence of our posterior with a
random Gaussian chosen from the mixture. We will use this to upper-bound
the divergence in a tractable way.

4.4 Variational Upper Bound for Discrete Mixture Prior

Here we will consider a particularly simple mixture prior: a discrete mixture
over two values of λ. This is similar to a ’spike-and-slab’ distribution.

We have two values of λ, λ1 and λ2 with prior probabilities p1 and p2,
respectively. To better fit posteriors with different means, we will employ a
variational posterior, that is we will introduce auxilliary probabilities q1, q2.
Our total upper bound will then be

KLupper = E
Ber(q1,q2)

KL(q||N [0, λ2i )) +KL(Ber(q1, q2)||Ber(p1, p2))

Here Ber(p1, p2) denotes a Bernoulli distribution with probabilities p1 and
p2. Expanding this out, this gives:

KLupper = q1KL(q||N [0, λ21]) + q2KL(q||N [0, λ22]) + q1log(
q1
p1

) + q2log(
q2
p2

)

= q1(log(
q1
p1

) +KL(q||N [0, λ21])) + (1− q1)(log(
(1− q1)
p2

) +KL(q||N [0, λ22]))

The last line follows as q1 + q2 = 1. For fixed values of p and λ, this function
is convex in q1, so its minimum can be found when the derivative is zero:

KL′upper(q1) = (log(
q1
p1

) +KL(q||N [0, λ21]))− (log(
1− q1
p2

) +KL(q||N [0, λ22])

When this is zero, we have:

log(
q1
p1

) +KL(q||N [0, λ21]) = log(
1− q1
p2

) +KL(q||N [0, λ22])

log(
q1

1− q1
) = KL(q||N [0, λ22])−KL(q||N [0, λ21]) + log(

p1
p2

)

1

q−11 − 1
= exp(KL([q||N [0, λ22])−KL(q||N [0, λ21]) + log(

p1
p2

))

Letting y = KL(q||N [0, λ22])−KL(q||N [0, λ21]) + log(p1
p2

), we have that q1 =
1

1+exp(−y) , i.e. q1 is a sigmoid of y. Since the sigmoid operation is differen-
tiable, we can set q1 to its optimal value during training and optimize using
gradient descent.
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Figure 1: The KL Divergence of posteriors with different means, for two
priors. x-axis tracks the mean posterior, and the y shows our variational
upper bound on the KL Divergence. Both priors have λ1 = 0.01 and p1 =
0.99, the left has λ2 = 0.2 and the right has λ2 = 1. The posterior variance
is equal to λ1

4.5 Gradients of Discrete Mixture Prior

The discrete mixture prior assigns very low KL Divergence to Gaussian pos-
teriors near zero, while not penalizing the posteriors that are away from zero
by too much. However, there is a trade-off involving the size of λ2, the ’slab’
proportion of the mix. If we increase λ2, we can decrease the KL Divergence
of parameters far from zero – however, this comes at the cost of reducing the
gradients far from zero, making it less likely for a parameter to be pushed
to zero by gradient descent. The problem essentially arises because the KL
Divergence is highly non-convex. We illustrate this in figure 1, which shows
the effect of varying the posterior mean on the KL Divergence. In the right
panel, λ2 = 0.2, while in the left panel λ2 = 1. As can be seen, setting λ2 = 1
decreases the value of the KL Divergence for large values of the mean, but
suffers from small gradients. This will result in suboptimal levels of sparsity.

To address this, we’ll perform optimization in two stages. First we’ll
optimize with a small value of λ2 to encourage sparsity. Then we’ll switch
to a larger value of λ2, decreasing the KL Divergence for posteriors far from
zero while leaving the posteriors near zero unaffected.
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5 Experiments

5.1 Two-Class MNIST

We ran our discrete mixture model on a modified version of MNIST. Each
of the classes 0, 1, 2, 3, 4 are assigned class 0, and otherwise class 1. We
calculated the PAC-Bayes error bound (2), using the cross-entropy loss as a
proxy for the empirical risk. Training was done using Adam[6].

The network architecture was fully-connected with two hidden layers with
dimensions 300 and 100. ReLU nonlinearities were used. The network was
pre-trained by SGD(Stochastic Gradient Descent) for 20 epochs to a good
optimum on the original task, then the PAC-Bayes bound was optimized
using Adam with a learning rate of 10−3. To avoid numerical instability,
we decomposed the KL divergence upper bound as KLupper = q1(log(σ(y))−
log(p1))+q2(log(σ(−y))−log(p2))+q1KL(q||N [0, λ21])+q2KL(q||N [0, λ22]) and
used the logsigmoid function from the pytorch[12] library, which numerically
stabilizes the gradient of log(σ(y)).

To choose the parameters for the variational prior, we used the following
strategy. Letting p1, p2, λ1, λ2 denote the parameters mentioned in section
4.3, we always set p1 = 0.99 and λ1 = 0.01, to encourage most weights to
cluster around zero. For λ2, we want to choose a value which will allow
us to efficiently encode the nonzero weights in each layer. A good prior
for this purpose would match the distribution of weight magnitudes found
in a typical layer. The most popular initialization schemes[3][5] for neural
network weights use a Gaussian with variance proportional to 1√

#inputs
(this

was the initialization we used for pre-training). During the initial training
we want to strongly encourage sparsity so we set λ2 = 1

2
√
#inputs

. After 10000

steps we switch λ2 to 4√
#inputs

.
The network was trained for 20000 steps with a mini-batch size of 100.

After training was complete, we evaluated the final accuracy on the training
set and KL Divergence, and calculated our final bound by using Newton’s
method to approximate the bound (1).

Network Generalization Bound Train Accuracy Test Accuracy KL/N
FC-300-100 0.768 0.952 0.961 0.129

Interestingly the test accuracy is sometimes greater than the training accu-
racy. Perhaps optimizing the PAC-Bayes bound acts as a strong form of
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regularization.
This is a nonvacuous bound, although not as good as the bound reported

in [2]. We think it is of independent interest, however, as it uses a prior
centred at zero instead of the initial weights. It relies upon a different sort of
regularity found in the training of neural networks, namely the prunability
of the learned nets.

To examine the extent to which our prior encourages sparsity in the
weights, figure 2 shows a histogram of the learned posterior means, before
and after optimizing the upper bound.

6 Discussion

Different PAC-Bayes bounds can be thought of as different hypotheses about
the types of solutions found by SGD. The bound in [2] relied upon the fact
that the solutions found by SGD are often reasonably close to the initial pre-
trained weights. The bound in [15] instead used the compressibility of the
network, leveraging the fact that the weights neural networks can be pruned,
compressed and stored highly efficiently. The bounds in this paper apply a
similar strategy, relying on the prunability of learned networks. Compared
to [15], we are working in a more purely Bayesian framework, explicitly using
a prior over weights instead of the implicit prior implied by a compression
scheme. Another difference is that the present paper does not exploit the
fact that non-zero weights can be further compressed using quantization and
Lempel-Ziv coding. It would be interesting to see if improved PAC-Bayes
bounds could be obtained using a soft-weight-sharing type prior, which en-
courages quantization. [13]
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